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Abstract   
 

In recent years, a number of factors such as transitioning energy policies and 

slow transmission expansion have caused more frequent closing of operation of 

power systems due to their technical limits. Thus, the awareness of critical 

clearing time of contingencies, which is concerned with the ability of a power 

system to maintain synchronism after being subjected to a large disturbance, is 

gaining importance. On-line critical clearing time (CCT) estimation belongs to 

these types of applications, which give an extensive insight into system 

vulnerability, thus enabling early decisions and coordination of corrective 

control actions. This study presents a novel approach for estimating CCT 

applying data mining techniques. The proposal is tested on the IEEE New 

England 39-bus system. Results demonstrate the feasibility of the methodology in 

fast CCT estimation, suitable for on-line applications. 
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I. Introduction 
 

Historically, the problem of power-system stability first became pronounced in 

the case of long distance transmission where generating stations located 

remotely were feeding power to metropolitan load centers over long distances. 

High investments in automatic voltage regulators and high reactance 

transmission lines caused frequent operation near stability limits resulting in 

cases where loss of stability was a regular feature for any disturbance. Power 

transmission via weak tie-lines connecting large power systems was another 

occurrence where stability was of great concern [1]. In recent years, due to 

transitioning energy policies [2] and slow transmission expansion, power 

systems are frequently operated close to their technical limits. Additionally, 

large- scale deployment of renewable energy source generation, ranging from 

small to large highly-distributed units, has led to significant shares of variable 

power feed-in in power systems worldwide. Under these conditions, the 

vulnerability of the power system is significantly increased in selected pre-fault 

states as a result of reduced and heterogeneous inertia. Some contingencies 

traditionally considered negligible may now lead to major consequences, 

including widespread disruptions. These considerations call for a systematic a 

wide- area scale inquiry into the stability problem. Therefore, the approach to 

CCT estimation has shifted to fast, real-time applications in order to 

accommodate to the changing nature of electrical power systems operation. 

Several research works have been carried out with regards to CCT estimation in 

connection to transient stability assessment. Sources [3]-[8] include proposals 

whose aim is to perform fast transient stability assessment through novel, 

comprehensive approaches. In [3] the authors propose the use of transient energy 

functions in order to establish a relation between a reduced model, obtained from 

synchrophasor data, and a detailed model. CCT of contingencies of the reduced 

model provide an indication of the original system's stability margin. The 

technique is specifically developed regarding tie lines, therefore conclusions are 

presented on the basis of a two- machine equivalent system. An integrated 

approach to CCT calculation is presented in [4]. Energy function based analysis 

provides an approximation as input to a detailed time-domain simulation. 

Despite its accuracy, the method is not suitable for on-line applications, since 

average execution time exceeds the sub-second range, as presented in a case 

study. In [5], CCT estimation is carried out through direct methods. An 

analytically developed metric approximates the CCT metric. The key advantage 
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offered by this approach is the possibility for parametric variation (i.e. load 

variation). However, due to limitations of direct methods, connected to 

calculation of unstable equilibrium points (UEP), application is limited to the 

two-machine infinite bus (TMIB) system. In source [6] authors introduce the 

notation of projection energy function (PEF) in order to overcome the drawbacks 

of [7], [8] regarding identification of critical generator group and assessment of 

controlling unstable equilibrium point. A kinematic approach is applied to 

system trajectory, thus constructing a novel stability index. In this paper, a data-

mining method is applied to fault-on rotor angles trajectories, with the scope of 

dimensionality reduction that facilitates a simple method for CCT estimation. 

The paper is organized as follows: Section 2 reviews the theoretical background 

on Center of inertia (COI)-referred machine angles as well as data mining 

method PCA. In Section 3, CCT estimation procedure is described, followed by 

a case study, presented in Section 4. Finally, Section 5 summarizes the 

concluding remarks. 

 

II. Theoretical background 
 

A. COI-referred rotor angles 
 

The behavior of rotor-angle δi, regarding a synchronous machine in the power 

system is determined by the swing equation (1). 

  

 (1) 
 

 

 (2) 

 

Variables Mi, Pmi, Pei   and ωi   stand for inertia moment, mechanical power 

input, electrical power output and rotor speed of the ith machine, respectively. 

Simulated time- domain trajectory of each machine angle is obtained as a 

solution of this differential equation. Equations (3) and (4) introduce the COI 

notation, where variable M is the total inertia moment, consisted of n machines, 

while δCOIi is the COI-referred rotor angle of ith machine. Since power systems 

can include machines of different sizes, the inertial influence of the system as a 

whole is best represented by the  COI notion [1]. 
 

(3) 
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                                                                                          (4)            

 

The TSA criterion, regarding COI-referred rotor angles, establishes that, if rotor-

angle of any machine or coherent area goes out of step after a fault is cleared 

(i.e. surpasses 180°), then the system is said to be first-swing unstable [1]. 

  

B. Principal Components Analysis 
 

A pattern recognition technique, vastly used in facial recognition, was applied to 

fault-on trajectories of COI- referred rotor angles with the scope of 

dimensionality reduction. Principal component analysis is a data mining 

procedure that transforms a matrix of input variables (measurements) to a new, 

reduced set of variables called principal components. Newly obtained variables 

represent a linear combination of the original variables and are derived in 

decreasing order of importance given that the first principal component explains 

as much of the variation in the original data as possible. This transformation is in 

fact an orthogonal rotation in m-space, where m is the number of input 

parameters. Detailed description of PCA and possible applications can   be   

found   in   [9],   [10]   and   [11].  This mathematical approach is used in order 

to reduce dimensionality of data and enable visualization of covariance between 

input variables. A plot of the few output variables facilitates a visual 

understanding of the driving forces that generated the original data. Typically, an 

extensive amount of samples n contained in the database is described by a large 

number of variables m. Before PCA is applied all variables contained in the raw 

data matrix Ym x n are pre-processed by subtracting their respective mean and 

scaling them to unit standard deviation σm. This is the only pre-processing  

required so that data matrix Xmxn consisting of m variables for n samples is 

obtained (where m < n): 

                                                             (5)                                              

 

A full PCA decomposition reconstructs the measurement matrix as a sum over m 

orthonormal basis functions w1 
‟  to w

’
m    which are arranged as row vectors. 

 

                                      (6)                                              

Mathematically, w‟i vectors represent the normalized right eigenvectors of the n 

x n matrix XTX. The ratio between their respective eigenvalue and the sum of all 

the eigenvalues corresponding to their respective eigenvectors gives a measure 
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of the total variation captured by that eigenvector. Equation may be compactly 

written in matrix form: 

                                                                                                          (7)                                     

 

On the other hand, a description of the majority of the variations in X can be 

achieved by abbreviating the PCA description. The following equation is a two-

dimensional PC model, where the variation of X that is not captured by the first 

two principal components appears in an error matrix E. 

 

                                                                                   (8)                                                

 

The weighing of each principal component in each data variable of X may be 

represented graphically. When two components are used, ith observation 

corresponds to a point in a two-dimensional space called a scores plot.  In    this 

manner, trajectories of COI-referred machine angles are simultaneously 

presented in a two-dimensional scores plot. Despite the lack of obvious intuitive 

meaning, this decomposition offers simultaneous representation of m different 

input variables as one trajectory, which is constructed on the basis of covariance 

of input variables. In return, traits that are difficult to obtain in time-domain, due 

to high data dimensionality are now clearly underlined. In this section, an 

exemplary two-dimensional decomposition is depicted in Fig. 1. However, in 

sections 3 and 4, dimensionality is augmented to three dimensions, without loss 

of generality. Fig. 1 best illustrates the notations introduced in this section. Input 

variables are fault-on trajectories of machine angles of IEEE 39 bus system in a 

COI-reference frame, contained in raw input matrix Ymxn. After matrix Y is 

normalized, PC decomposition is executed. There are ten machines (m = 10) and 

six cases, in which fault clearing time varies from Tclear < CCT to Tclear > 

CCT. In order to improve time efficiency, fault simulations conducted in PSS® 

NETOMAC are aborted through batch processing, when either loss of stability is 

established (cases 5 and 6) or when a case is deemed first swing-stable (cases 1-

4). Since only a single fault location scenario is considered in this section, 

system trajectory is represented in a two dimensional principle component- 

domain. The orthogonal axes, denoted in Fig. 1 as Component 1 and Component 

2 correspond to the first two eigenvectors of covariance matrix XTX. Point- 

vectors D1 to D10 represent the first two rows of matrix Tmxm, while 

trajectories, illustrated as dotted lines are elements of matrix W. In this manner, 

a novel approach to system variables observation is adopted. Some of the 

advantages offered by this proposal are discussed in this paper. In order to better 

understand the connection to the traditional time-domain representation, 
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trajectories     of machine angles in case 6 (Tclear   CCT) are also illustrated in 

Fig. 1 (top left corner). This framework allows considering several possible 

operating cases, observed through COI- referred machine angles. All of the cases 

follow the same trajectory, until fault is cleared. Each scenario starts from the 

fourth quadrant. However, cases where clearing time is less or equal to the CCT 

follow trajectories that also end in the fourth quadrant, as first swing is 

completed in time domain. 

 

 

 

Fig. 1. Example of scores plot in two dimensions 

 

 

III. CCT Estimation Proposal 
 

The problem of first-swing stability is closely linked to angular separation 

between COI-referred rotor angles. Faults result in angular separation between 

groups of coherent machines. It is therefore of interest to research the possibility 

of providing a CCT estimation algorithm, based on PC decomposition of rotor 

angles and their relative positions in a novel components space. For that 

purpose, a database was created, consisting of fault-on rotor angles during 

several faults located at different buses. Once input data is decomposed to 

principle components, faults are differentiated into trajectory groups that fall into 

the same octant of components space. In order to obtain a detailed coherency 

understanding, trajectories in each octant are decomposed into principle 

components as well. Distance metric d 2  between each observation point w(k) 

and machine angle coefficient ti is defined as follows: 
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2 

Time-domain machine angles 

 

 
  

                                                                        (9) 

 

 

Subsequentially, Euclidean metric dik is normalized according to (10) in 

order to gain a better understanding of  the relative distance to machine 

coefficients, which in this context replace the notation of centroids, defined in 

fuzzy clustering problems. 
 

 
                                                                        (10) 

 

In this framework, centroids are fixed, since they are represented by machine 

coefficients, marked in Fig. 1 with black dots. However, relative distance to each 

centroid varies from observation to observation. Fig. 2 and Fig. 3 introduce the μ 

metric in reference to time-domain machine angle trajectories. It is evident that 

coherent machine groups have similar distance metrics that form clusters. Case 1 

(Fig. 2) corresponds to fault presented in Fig. 1, where coherent machines 4 and 

5 (marked with black, dashed lines) go out of step. Machines 2, 3, 8, 9, and 10 

form a cluster of μ metrics, which is intercepted by the μ metrics of machines 4 

and 5 near the CCT. In a different case (denotated as case 2, Fig. 3) machines 4-

7, marked with a full, darker grey line, form a cluster of μ metrics. In time 

domain, these machines are a coherent group. Their relative distance metrics are 

averaged and considered as a single variable, without loss of generality. A 

similar observation is valid for machine cluster 2, 3, 8, 9, 10 while machine 1 

represents a rigid source. The interception point of averaged μ metrics 

corresponding to groups from disjoint octants coincides with the CCT of the 

fault in both cases. Since μ is a distance metric, we can interpret x (t = CCT) as 

an observation that is characterized with intercepting distances to machines 

belonging to disjoint machine clusters. Since in general, distances intercept in 

more than one point, the point nearest CCT is identified as the observation x (k) 

with intercepting relative distance metrics between machine clusters with the 

largest coefficients (ti), as contained in matrix T. For example, in case 1, 

Euclidean distance to cluster with the largest coefficient formed by machines 4 

and 5 intercepts the distance to the second largest cluster, containing machines 2, 

3, 8, 9, 10. A similar reasoning is applied in case 2. In order to test the general 

validity of this observation, a case study is performed, as follows. 
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IV. Case Study 
 

The proposal is tested on the IEEE New England 39-bus system using 

PSS®NETOMAC for dynamic simulations and MATLAB for data mining. 

Three-phase short- circuit fault is applied to a random bus and it is left 

uncleared. Simulation is aborted once loss of stability is established. The process 

is repeated for 20 different buses in order to obtain a database matrix Y, 

consisting of fault-on rotor angles. PC decomposition is followed by partition of 

faults to octants, and distance metrics calculation. Estimated CCT are  presented 

in Table I. Discrepancy between estimated values and true CCT values does not 

exceed 10 ms. Cumulative execution time is consisted of simulation time 

(around 5 s), which prevails, while time range needed for CCT estimation is 

(0.343) or 0.0171 s per fault. Accuracy and execution time efficiency are 

comparable to fast energy functions based estimation proposals presented in 

sources [3]-[8]. 

 

V. Conclusion 
  

A CCT estimation proposal was developed, based on a data mining technique 

that offers simultaneous representation of several input variables as a single 

trajectory, constructed on the basis of covariance of input variables. Traits that 

are not obvious in time-domain, due to high data dimensionality, are now clearly 

underlined. Estimated CCT coincides with intercepting distance metrics to 

disjoint machine groups. Time efficiency is comparable to fast, energy functions 

based algorithms. Results presented in this paper suggest that estimated values 

provide a close indication of true CCT. However the method was heuristically 

derived, based on extensive observations and its general validity should be the 

topic of further research. Algorithms. Results presented in this paper suggest that 

estimated values provide a close indication of true CCT. However the method 

was heuristically derived, based on extensive observations and its general 

validity should be the topic of further research. 
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Fig. 2. Case 1 

 

 

 
 

Fig. 3. Case 2 



Teodora Dimitrovska, Urban Rudez, Rafael Mihalic 

CCT Estimation Based on Principal Components Analysis 

90 

 

 

References 
 

[1] M. Pavella, D. Ernst, and D. Ruiz-Vega. Transient Stability of Power 

Systems: A Unified Approach to Assessment and Control. Kluwer Academic 

Publishers, 2000. 

[2] O. Feix, R. Obermann, M. Strecker, and A. Brötel. German Grid 

Development Plan 2013, (Netzentwicklungsplan Strom 2013). Berlin, 2013 

[3] A. Paul and N. Senroy. “Critical clearing time estimation using 

synchrophasor data-based equivalent dynamic model.” Transmission 

Distribution IET Generation, vol. 9, no. 7, pp. 609–614, 2015. 

[4] B. K. Saharoy, A. K. Pradhan, and A. K. Sinha. “Computation of critical 

clearing time using an integrated approach,” in International Conference on 

Power Systems, 2009. ICPS ‟09, 2009, pp. 1–5. 

[5] L. G. W. Roberts, A. R. Champneys, K. R. W. Bell, and M. di Bernardo. 

“Analytical Approximations of Critical Clearing Time for Parametric 

Analysis of Power System Transient Stability.” IEEE Journal on Emerging 

and Selected Topics in Circuits and Systems, vol. 5, no. 3, pp. 465–476, Sep. 

2015. 

[6] D. Z. Fang, J. G. Yang, W. Sun, Z. Y. Xue, and S. Q. Yuan. “Transient 

stability assessment using projection formulations.” Transmission 

Distribution IET Generation, vol. 3, no. 6, pp. 596–603, Jun. 2009. 

[7] Fang D.Z., David A.K. „A normalized energy function for fast transient 

stability assessment‟, Int. J. Electr. Power Syst. Res., 2004, 69, (2–3), pp. 

287–293 

[8]  Fang D.Z., Song W.N., Zhang Y. „A new transient energy function‟, Sci. 

China Ser. E-Technol. Sci., 2002, 45, (4), pp. 426–432 

[9] “A tutorial on Principal component Analysis” [Online]. Available: 

https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial  Intuition_jp.pdf 

[Accessed: March 14, 2016]. 

 [10]  N. F. Thornhill, S. L. Shah, B. Huang, and A. Vishnubhotla. “Spectral 

principal component analysis of dynamic process data.” Control Engineering 

Practice, vol. 10, no. 8, pp. 833–846, Aug. 2002 

 [11] B. Moore. “Principal component analysis in linear systems: Controllability, 

observability, and model reduction.” IEEE Transactions on Automatic 

Control, vol. 26, no. 1, pp. 17–32, Feb. 1981 
 

 

 

 

 

 

 

 

 

 

https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial%20Intuition_jp.pdf
https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial%20Intuition_jp.pdf
https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial%20Intuition_jp.pdf
https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial%20Intuition_jp.pdf


Teodora Dimitrovska, Urban Rudez, Rafael Mihalic 

CCT Estimation Based on Principal Components Analysis 

91 

 

 

Table 1 

 

Bus 
Estimated 

CCT (s) 

True CCT 

(s) 

Absolute 

error (s) 

Relativ

e error 

(%) 

29 0.177 0.167 0.01 5.99 

28 0.180 0.172 0.008 4.65 

6 0.212 0.202 0.01 4.95 

5 0.222 0.212 0.01 4.72 

19 0.207 0.217 -0.01 -4.61 

16 0.262 0.252 0.01 3.97 

7 0.242 0.252 -0.01 -3.97 

8 0.242 0.252 -0.01 -3.97 

11 0.252 0.257 -0.005 -1.95 

10 0.267 0.272 -0.005 -1.84 

4 0.282 0.277 0.005 1.81 

22 0.297 0.287 0.01 3.48 

23 0.297 0.292 0.005 1.71 

13 0.287 0.297 -0.01 -3.37 

24 0.312 0.307 0.005 1.63 

14 0.312 0.312 0 0.00 

17 0.307 0.317 -0.01 -3.15 

21 0.322 0.322 0 0.00 

15 0.362 0.362 0 0.00 

18 0.405 0.402 0.003 0.75 

CPU(s) 5.343 (0.267 per fault) 

 


