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Abstract  

The paper presents a yearly optimal State of Charge 

(SoC) level calculating function to the grid connected 

residential size PV energy storage systems. Main aim is to 

decrease the electric grid peak load, energy need by 

offering an adaptive SoC value to the grid connected PV 

inverter with energy storage. The simulation utilizes a 

global optimization method with low computation need 

and it is tested on a yearlong measurement data which is 

unique in his segment.  

The goal of the work is to lower the duration of the 

residential peak time and raise the off-peak time energy 

need by increasing the minimal SoC level of the grid 

connected PV inverter with energy storage without 

charging the energy storage in off-peak time. Meanwhile, 

the adaptive algorithm is minimizing the electric grid 

dependence, without adding as few as possible extra 

charge/discharge cycles to the energy storage. 

In contrast of other widely known SoC algorithms the 

approach presented here has a verified capability to be 

used in all seasons. Moreover throughout this paper only 

real generating data of a small scale PV plant is used. 

Furthermore, corresponding formula is explored between 

the size of the energy storage, the saved energy and the 

PV production/energy need ratio in yearly base. 
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1 Introduction  

In Germany, the grid connected PV installation limit is 

approaching and in the near future only the energy storage 

systems, especially the decentralized systems could 

handle this problem. It is getting more and more 

important to utilize these grid connected systems (Figure 

1.) to decrease the overall peak load on the electric grid, 
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due to the fact that nowadays PV battery storage systems 

are not equipped with adaptive algorithm to manage peak 

load shaving, therefore, the stored energy is released 

without any kind of storage strategy until the minimal 

SoC is reached [1]. The cause behind this is to maximize 

the self PV energy usage, meaning that the energy should 

be used when it is produced. In such a case, it is beneficial 

to create a default “grid-friendly” algorithm which 

manages the State of Charge (SoC) level and the 

discharge period of the battery without utilizing off-peak 

charge/ peak discharge cycles, basically the discharge 

period is postponed when it really needed to accomplish 

the peak load shaving effect and to maximize the energy 

storage lifetime and the electric grid independent time. 

Fig. 1. Theoretical Power direction and sign convention in the 

system studied [1] 

 

Keeping simplicity in mind, this algorithm was designed 

based on the PV power, load and time measurement of the 

energy storage’s inverter. Additionally, global a 

optimization method was used which has relatively low 

computation need. The simulation was run on yearly 

database, which is unique capability in comparison with 

other discharge algorithms. To fine tune the algorithm 

parameters. 
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D Energy need in every 15 minutes fD Derivate by demand 

PV PV energy production in every 15 minutes fPV Derivate by PV energy production  

Dc Critical point energy need in every 15 minutes fPVPV Double derivate by PV energy production 

PVC Critical point PV energy production in every 15 minutes fDD Double derivate by demand 

fDPV Derivate by demand and by PV energy production fPVD Derivate by PV energy production and by demand 

2 Measurement data 

It is well known that the corner stone of any 

simulation is the precise measurement data, therefore, the 

yearly energy production data of a 2kWp south oriented 

PV system located in Vác, Hungary, was collected to help 

to simulate real word conditions.  

The PV system produced 2253 kWh in 2013. Although, 

the produced energy is just a few percent more than in 

Munich, Germany which is the cradle of the PV systems 

with energy storage [2].  

On the other hand, an average 2800 kWh/year Hungarian 

household yearly energy need was used, which is based 

on measurement data. Because of the nature of the electric 

grid operation and the need to optimize the discharge 

cycle, the data resolution was set to 15 minutes which 

means that the household energy need and the energy 

production of the PV system was averaged by a moving 

average calculation in the resolution of 15 minutes. A 

more frequent time interval would have been unnecessary 

based on charging/discharging and conditioning 

characteristics of some energy storage systems, especially 

true for the AGM lead-acid batteries [3]. 

3. Structure of the simulation 

Fig. 2.Flowchart of the proposed optimization methodology 
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On the 2
nd

 Figure it shown that the simulation and the 

SoC calculating algorithm’s behavior are mainly 

influenced by the previous 15 minutes battery storage 

inverter measurement data to determine the next 15 

minutes inverter behavior. The following input 

parameters are given, or could be changed by the user;  

 The upper and lower SoC limits of the energy 

storage 

 The adaptive SoC range 

 Turn on SoC limit of the threshold load 

 

The following parameters are measured by the battery 

storage inverter; 

 The date and the difference of the PV production 

and the household load 

 SoC level of the energy storage 

 Load  

 

All of these parameters are used to decide that the PV 

energy should be stored or released, furthermore, it can be 

seen the simplicity was the corner stone of the adaptive 

algorithm.  

The threshold load calculation method is based on the 

previous three day average night load (24:00-05:00). 

Furthermore, this function is easily feasible due to its 

simplicity. 

The adaptive part of the simulation is realized by a plug-

in algorithm built in the SoC limit calculating function, 

this algorithm has the role to fit adequate curve on the 

previous three day load and on the PV production data. 

Basically, the goal of the algorithm is to find their local 

maxima, using the mean of the previous three day local 

maxima (1). The next day SoC limit could be increased in 

peak PV production time period and decreased in the peak 

load period, if it possible. The global maximum is 

determined by the following equation (1);  

                       

                            

                                  

               
  

                      

                                                  

 

As mentioned before, the goal of function (1) is to 

determine that the adoptive algorithm SoC level should be 

increased or decreased and to postpone the discharging of 

the stored PV energy for the peak load time period.  

The algorithm has a built in threshold load “if” function 

which is turned on, if the SoC level drops to a certain 

value and it is set in default mode to 15% over the 

minimal SoC value, basically the peak shaving effect is 

partly controlled by this function.  

However, the overall charge/discharge period is not or 

minimally affected, due to the previous three day night 

load average calculation, which goal is to predict a lower 

threshold load, than the actual real load. 

The adaptive algorithm is not intended to affect the 

overall yearly energy balance of the grid connected PV 

systems with energy storage; it only shifts the discharge 

period by increasing the SoC level minimal value. In case 

of the prediction of the next day PV production peak  the 

global optimal algorithm method is justified based on the 

fixed PV module orientation, with this method the 

installed PV system resultant orientation can be 

determined. However, the peak load period for average 

household is strongly depends on the resident energy 

usage habit. Therefore, there are two options to set the 

discharge period.  

The first is better in case of low PV energy storage system 

electric grid penetration, which is using the statistic peak 

load periods of the overall electric grid, based on 

experience and measurement data of the system operator.  

The second option is better in case of high penetration 

which adjusts the energy storage discharge time period to 

the peak load period of the household. In case of the 

second option, the energy storage discharge period is 

adjusted by the peak load period. 

The state of charge is calculated in every 15 minutes 

according to the energy flow from or into the energy 

storage and to the annual actual capacity of the energy 

storage. The maximum discharge power is set to a 

minimum of 10 hours discharge time period of the 

system. The annual capacity is based on the aging and self 

discharging properties of the energy storage, which in this 

case is an AGM lead-acid battery [4]. The battery 

charging strategies are not part of the article; therefore, it 

was not taken into consideration. The aging coefficient 

for 1000 cycle lifespan (at 30% Debt of Discharge) was 

calculated from the annual capacity to describe the 

capacity loss of the energy storage [4].  

3 Initial conditions of the simulation 

The default parameters (Table 1.) and the initial 

conditions of the simulation are set to represent a real 

word conditions. 

The following conditions were used in the simulation;  
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Table 1.  Simulation initial parameters 

Name of parameters Value Unit 

Inverter efficiency (DC/AC) 

[4] 

95 % 

AGM lead-acid energy storage 

capacity (12V) 

1200 Ah 

Energy storage ageing 

coefficient [5] 

0,0012 1/h 

Energy storage self discharging 

coefficient [5] 

0,00014 1/h 

Nominal charging/discharging 

time 

10 h 

Efficiency of the energy 

storage at charging/discharging [6] 

90 % 

Energy storage cut off min. 

SoC level 

32 % 

Energy storage cut off max. 

SoC level 

90 % 

Threshold load turn on SoC 

level 

40 % 

Threshold load (based on the 

last three day night load) 

50 % 

Adaptive algorithm SoC range 13 % 

4 Power flow simulation results with fix 

parameters 

The simulation was run on real yearlong PV 

production and household energy measurement data 

which summed up to 2253 kWh in case of a 2kWp PV 

system and the yearly energy need was set to 2800kWh 

which is average energy need of a Hungarian household. 

Fig. 3. Simulation results without adoptive algorithm 

 

On Fig. 3 it can be seen that the simulation results from 

24
th

 until 27
th

 of January without the adoptive algorithm, 

in which the energy storage in discharged immediately 

without any kind of threshold load or discharge period 

timing.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Simulation results with adoptive algorithm 

 

Fig. 4 shows the simulation results from 24
th

 until 27
th

 of 

January utilizing the adaptive algorithm which includes 

the threshold load switching function. As it can be seen in 

the Figure 4
th

, the peak load on the grid was significantly 

reduced even in winter time, when the daily PV energy 

production is low. 

Fig. 5. State of Charge level without adoptive algorithm 

 

As illustrates, the SoC level of the energy storage is on 

Figure 5
th

 and 6
th

 and it could not increase as much as on 

6
th

 Figure due to the constant 30% minimal SoC limit. 

The sharp increase of the minimal SoC level can be seen 

on the 7th Figure caused by the properly working 

adoptive algorithm. The SoC level is shown on 5
th

 and on 

the 6
th

 Figure from 24
th

 until 27
th

 of January, the 

connection between the minimal SoC level, which is 

influenced by the adaptive algorithm, and the real SoC 

level of the energy storage is well-marked. 
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Fig. 6. State of Charge level with adoptive algorithm 

 

As mentioned, real yearlong PV production and 

residential energy data was used which results that the 

calculated peak time period and the predetermined peak 

load (by grid operator) period by the adaptive algorithm  

is not the same, but really close to each other. According 

to the simulation, the calculated peak time period is 

shorter period of time, than the peak time period given by 

the grid operator. Without the algorithm the minimal SoC 

level would have been constant 30%, however, with the 

adaptive algorithm the increased the minimal SoC limit, 

which can be seen on the Figure 7
th

. 

Fig. 7. Minimal State of Charge level with adoptive algorithm 

 

The best way to measure the effectiveness of the adaptive 

SoC algorithm, which is basically a built in peak shaving 

algorithm, is to compare the peak time saved energy 

amount with and without the adaptive algorithm. 

Although, the yearly nominal energy comparison of the 

results would be delusive because in winter the electric 

grid night peak load could be significantly higher than the 

peak load at noon and in winter time the daily PV energy 

output is 4-5 times lower than in summer in Hungary[2]. 

All of the mentioned facts result that there has to be a 

difference between saved energy amounts between the 

seasons. Therefore, two seasons were defined in the 

simulation; winter and summer. Winter represents the 

timeline from October until April and summer lasts from 

April until October. In both cases the peak time period 

was 7 hour long, lasting in winter from 7-9 am and from 

5-8 pm, in summer it was shifted one hour forward to 

better fit to the electric grid summer load curve. 

According to the simulation it is resulted, only 6,5% 

stored energy increase using the adoptive algorithm, 

although the extra charge/discharge cycles were taken 

place in winter season when they were the most needed. 

Furthermore, the yearly saved energy amount was 

decreased only by 2,03% which is hopefully an 

acceptable loss for the customers for the greater good of 

the grid operator. Additionally, the winter peak time 

“saved” energy is usually the most expensive energy in 

the market [7]. 

Fig. 8. Saved peak time energy from the grid in winter season with and 

without the adaptive algorithm (based on 2800kWh yearly energy need) 

 

On Figure 8
th

 it can be seen that the energy difference 

between the default and the adaptive discharging strategy 

is 31,97kWh in case of a 2800kWh yearly energy need 

residential customer equipped with a 2kWp PV system 

and 14,4kWh of AGM lead-acid battery storage which 

usable capacity is limited to 60% (from 30% to 90% 

SoC). It must be mentioned that the additional charging or 

discharging cycles resulted only 0,042% capacity loss to 

the energy storage and 87,4% of the extra energy storage 

capacity was used in winter season.  

5 Simulation results with variable parameters 
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Fig. 9. Connection between the ratio of the usable energy storage capacity/average daily energy need, ratio of PV production/yearly energy need and 

the ratio of the yearly “saved” energy/yearly energy need 

 

The primary goal of the simulation was create an adaptive 

algorithm which was shown in  Chapter 4, but using the 

simulation results further correlation were able to be 

explored. To be exact, the equation between the size of 

the energy storage, the yearly energy production of the 

installed PV system and the saved energy from the gird of 

a given residential customer could be determined .  

To create an equation between the mentioned parameters, 

relative input parameters were used which are the 

followings; 

 Ratio of the yearly “saved”  energy/yearly 

energy need 

 Ratio of the PV production/yearly energy need 

 Ratio of the usable the energy storage 

capacity/average daily energy need 

 

The idea behind the variable parameter simulation is to 

find the transparency between the size of the energy 

storage, the yearlong energy need and the yearly energy 

production of the PV system. The equation, which fits to 

the corresponding data, is necessary to predict two of the 

missing parameters when one of them is known. Using a 

global optimization on the polynomial surface equation 

which is extracted from the simulation data, the missing 

parameters could be determined (Figure 9. and 10.). The 

best way to demonstrate this capability is through an 

example; When there is a household with 1,2 ratio of PV 

production/yearly energy need, then the optimal size of 

the battery storage of the system is 14kWh system with 

the usable capacity of 8,4kWh. 

Fig. 10. Connection between the ratios of the usable energy storage 

capacity/average daily energy need and PV production/yearly energy 

need  
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6 Conclusion 

According to the simulation results, the winter time 

peak load energy need was significantly reduced, to be 

exact, it was lowered with 31,97kWh, or 1,141% of the 

yearly energy need in comparison with the “without 

adaptive algorithm” case. Furthermore, the saved energy 

was decreased only by 0,254% in comparison with the 

without adaptive algorithm case. However, the load curve 

was smoothened to help the grid operator, when it is 

really needed. As we all know, these kWh are the most 

worthy ones. 

The adaptive algorithm worked well in summer season as 

well as in winter season achieving 87,4% of well. The 

peak energy/power was reduced, meanwhile only causing 

0,042% greater capacity loss to the lead-acid battery 

storage in comparison with the default PV system energy 

storage discharging protocol.  
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